

HURRICANE FORECAST

Rapid Progress in Hurricane Intensity Forecast Improvements

Vijay Tallapragada Chief, Global Climate and Weather Modeling Branch NOAA/NWS/NCEP/EMC Vijay.Tallapragada@noaa.gov

NCEP Operational Models for Tropical Cyclone Forecast Guidance

Deterministic forecast guidance

Hurricane Weather Research and Forecast System (HWRF)

Geophysical Fluid Dynamics Laboratory Hurricane Model (GFDL)

Global Forecast System (GFS)

□Ensemble forecast guidance

Global Ensemble Forecast System (GEFS)

□HFIP supported NWP models

- Experimental Multi-model High-Resolution Regional Ensemble System (20-member HWRF + 10-member COTC + 10-member GFDL)
- Other experimental deterministic models: various versions of ARW and HWRF, GFDL, Univ. Wisconsin, COAMPS-TC

Hurricane Weather Research and Forecast (HWRF) Modeling System

Unique regional model with global coverage

- High-resolution triple nested atmosphere-ocean coupled system operating at 18/6/2 km providing 126-hr forecast guidance for all tropical cyclones in the world
- On-demand modeling system run for as many as 7 storms including invests
- Advanced vortex initialization and inner core data assimilation system ingesting many in-situ observations including NOAA P3 TDR and dropsondes from various reconnaissance aircrafts (NOAA P3, G-IV, AF-C130 and Global Hawk)
- Annual upgrades focused on continuous advancements to the modeling system for improved TC track, intensity, structure, size and rainfall predictions with increased focus on Rapid Intensity forecasts
- Special forecast products including synthetic satellite imagery, swaths of wind/rain and IC/BC for hurricane waves

Significant improvements in Atlantic Track & Intensity Forecasts

Targeted research and development in all areas of hurricane modeling

NCEP

Highlights for 2015: Intensity forecast improvements realized in real-time from operational HWRF

Improvement in RI Forecasts: North Atlantic and Eastern Pacific Basins

NWS GFDL Hurricane Forecast System Morris Bender and Timothy Marchok NOAA/GFDL

- Operational hurricane forecast model for over two decades serving NHC and JTWC
- Atmosphere-Ocean Coupled system operating at 18/6 km resolution
- Supported by JHT and HFIP to serve research and operations
- Participating in HFIP regional ensemble system

Upcoming changes to the GFDL Model:

Significantly Reduced Track Error in 3-5 day forecast lead times

2015 Atlantic 2015 Eastern Pacific

Next GFS/GDAS in 2016: The 4D Hybrid En-Var

4-D hybrid

All-sky AMSU-A Radiances

SATWND ob changes

CRTM v2.2.1

Aircraft ob changes

Modified thinning/weight in time

Bug fixes and optimization for GSI

New ob monitoring

Upgrade data assimilation monitoring package

- 4D increment constructed by figuring out best combination of 4D ensemble perturbations
- Weights constant throughout window
- Use temporal correlations within each member to extract time information in obs

NCEP Global Forecast System (GFS)

Historical performance of GFS for Atlantic Hurricane Forecasts

GFS Hurricane Intensity Errors (kts)-- Atlantic 55 Fcst Hour -0 45 -12 24 *****36 35 -48 -72 25 -96 -120 15 20012002200320042005200620072008200920102011201220132014

Tracks for all forecast lengths have been improved in the past 14 years; 72hr track error reduced from 200nm to 100nm Intensity improved in 2010 and 2011 due to GFS resolution increase from 35km to 23km; and in 2012 and 2013 due to ENKF-3DVAR GSI Implementation in May 2012

NCEP Global Forecast System (GFS)

Historical performance of GFS for Eastern Pacific Hurricane Forecasts

Significant track error reduction in the past 14 years. 36-hr track error reduced from 100nm to 50nm; 72-hr track reduced from 200 to 100 from 2004 to 2014 !

Significant intensity forecast improvements in 2012 stabilized to some extent...

Impact on Hurricanes: NHC Evaluation of 2016 GFS

Impact on Hurricanes: NHC Evaluation of 2016 GFS

Impact on Hurricanes: NHC Evaluation of 2016 GFS

Verification of TC cyclogenesis in the GFSX – comparison to current and previous version of the GFS (courtesy of Dan Halperin and Bob Hart)

GFS in 2017/2018: Impact of resolution & physics

NEMS/GSM run at T2046: opr physics

NEMS/GSM run at T2046: SHOC+CS

IHC/TCORF, Miami, FL, March 16, 2016

GFS in 2017/2018: Unified representation of Clouds, Convection, PBL and Microphysics

Future of Global Modeling at EMC: NGGPS

Multi-year NWS-led community effort to build and implement:

- Future global prediction system supporting multiple forecast applications at NCEP
- Community code development at EMC
- Unified modeling at NCEP
- Accelerate Forecast Performance Improvement through accelerated Research to Operations
- Extend forecast skill beyond 8 to 10 days
- Support development of weeks 3 and 4 products
- Overall system designed (re-architected) to take advantage of evolving HPC architectures (CPU/GPU Hybrid or Massively Integrated Cores (MIC))
- Highly scalable
- Adapt to continued evolution of HPC

Results from Phase 1 Testing

GSM-NH (EMC) MPAS (NCAR) FV3 (GFDL) NIM (ESRL) NEPTUNE (NRL) NMMB-UJ (EMC)

GOAL: Global Weather Prediction: Becoming Second to None Re-establish US as world's leader in Global Weather Prediction

NGGPS Dynamic Core Phase 2 Test Plan & Implementation Strategy

Testing plan drafted by the Test Manager (Jeff Whitaker) - DTG will assess plan Planned Phase 2 Testing criteria:

- Deep atmosphere dynamics
- Conservation properties
- Untuned forecast skill and model robustness
- Model performance with physics
- Variable resolution/nesting
- Climate integration performance
- Adaptable to NEMS/ESMF

Phase 2 testing is being conducted with a stand-alone GFS based physics package using interoperable physics driver

NGGPS Design

Generalized Nesting By Coupling

AOML in partnership with EMC and other OAR labs is building the Next Generation Generalized Nesting Framework (NGGNF) within NEMS to advance global-2-local scale modeling for hurricanes

GEFS Changes (Dec. 2nd 2015)

	V10.0.0	V11.0.0
GFS Model	Euler, 2012	Semi-Lagrangian, 2015
Resolution 0-192 h	T254 (52km) L42 (hybrid)	T _L 574 (34km) L64 (hybrid)
Resolution 192-384 h	T190 (70km) L42 (hybrid)	T _L 382 (52km) L64 (hybrid)
Output resolution	1 ^o x 1 ^o	0.5 ^o x 0.5 ^o and 1 ^o x 1 ^o
Output frequency	6h	3h the first 8 days; 6h the rest

- Moving from BV-ETR approach to EnKF
 - A major scientific shift

NCEP

- Unification of DA and Ensemble Generation
 - Direct link to the hybrid 3D-Var EnKF DA system
- Perturbations are 6h EnKF forecasts with adjustmen
 - Tropical Storm Relocation
 - Centering of the perts on the ensemble ctl analy
- Stochastic perturbation (STTP) upgrade
 - Fine-tune amplitude for changes in model and perturbation method
 - Turn off surface pressure perturbations for tropics
 - to reduce the spread growing of geopotential height

TC Track Forecast Performance from GEFS

NCEP

HFIP Experimental Regional Ensemble Prediction System

- 20-member 3km HWRF ensembles driven by GEFS for IC/BC and stochastic convective and PBL perturbations
- High-resolution probabilistic products provide forecast uncertainty in track, intensity, structure (size) and rainfall, along with ensemble mean products

(hr

NOAA/NCEP/EMO

CASE 147

Forecast

Long-Term Plans for Hurricane Modeling at NCEP

Hybrid EnKF-GSI DA system: 2 way coupling

Summary

- □NCEP is uniquely positioned to provide high-resolution deterministic and ensemble forecast guidance for tropical cyclones and high-impact weather associated with TCs
- Future plans are designed to further accelerate the improvements in forecast products through developing advanced NWP techniques supported by HFIP and NGGPS
- □Community interactions through effective O2R/R2O/T2O strategies to address Next Generation Forecaster Needs

QUESTIONS?

